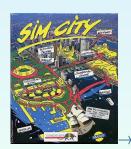


Artificial Intelligence in The Sims series

Yoann Bourse

Plan de la présentation


- 1 The Game
- 2 Pathfinding
- Oecision making
- Social interactions
- 5 Evolution in the franchise
- 6 Prospects and conclusion

History The Sims

The Sims Player/Al

Introduction

Will Wright's genius : Simulating life

Simcity (1989) \longrightarrow SimAnt (1991) \longrightarrow The Sims (2000)

History
The Sims
Player/AI

Starting a new franchise

Numerous expansions set and item packs
User-created content

Sequels

What is The Sims

- Sandbox
- God game
- Life simulation

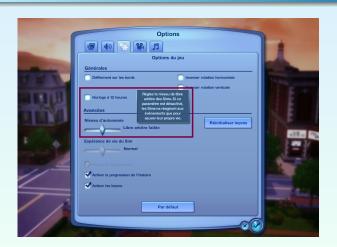
Released in February 2000

- \Rightarrow best selling PC game :
- 6.3 million then, 16 million now

One of the most influencial Al

The player controls the life of a family of sims

Player vs. Al


The player:

- Design characters
- Design buildings
- Give order to his characters

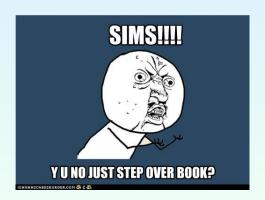
The computer:

- Controls game mechanics
- Controls non-played characters
- Elementary actions (pathfinding)
- Free will

The free will

Untill ordered otherwise, sims can survive by themselves (narrative aspect)

But not too well, otherwise no incentive to play


Presentation plan

- Pathfinding
- ② Decision making (smart objects)
- Social interactions
- Evolution of the series : controlling non-played characters.

- 1. Room Graph
- 2. Multi-scale A*

Pathfinding

How does a sim go from A to B?

- 1. Room Graph 2. Multi-scale A*
- Pathfinding Reminder : A*

In a graph, to go towards a goal, make the step towards the neighbour minimizing d + h

- d being the **distance** to this neighbour
- h an **underestimate** of the distance between this neighbour and the goal

An good underestimate is often the geometric distance ignoring obstacles

- 1. Room Graph
- 2. Multi-scale A*

Pathfinding in the Sims: HPA*

Most games adapt A* into **Hierarchical Pathfinding A*** (2004)

Idea: Different level of detail:

instead of working with waypoint, work first among groups of waypoints.

In the Sims:

- Shortest path at room level
- Divide the room into big chunks
- Divide the chunks into smaller chunks
- + smoothing

- 1. Room Graph
- 2. Multi-scale A*

1. Room Graph

1. Room Graph

2. Multi-scale A*


1. Room Graph

A* HPA* 1. Room Graph

- 2. Multi-scale A*

1. Room Graph

- 1. Room Graph
- 2. Multi-scale A*

- 1. Room Graph
- 2. Multi-scale A*

- 1. Room Graph
- 2. Multi-scale A*

- 1. Room Graph
- 2. Multi-scale A*

A*
HPA*
1. Room Graph
2. Multi-scale A*

Proof

Demonstration video:

 $http://www.youtube.com/watch?v{=}iI{-}R4M{-}yIzo$

Modeling human needs Smart Objects The Happyscape Taking personalities into account

Decision making

How does a sim take decisions without supervision?

Modeling human needs

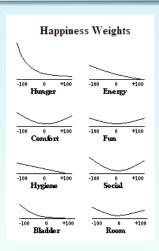
Smart Objects
The Happyscape
Taking personalities into account

Modeling human needs

8 basic needs evolving through time, under the influence of circumstances (sleeping? eating?):

Physical

- Hunger (eating)
- Comfort (sitting/laying down)
- Hygiene (bathing)
- Bladder (urinating)


Mental

- Energy (sleeping)
- Fun (playing)
- Social (interacting with others)
- Room (architecture, furniture)

Modeling human needs

Smart Objects
The Happyscape
Taking personalities into account

Need ⇒ **Happiness**

Different needs have **different impact on the mood** :

Being a little hungry is ok, but a great hunger will have a huge negative impact on mood.

Modeling human needs

Smart Objects
The Happyscape
Taking personalities into account

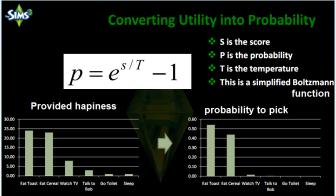
What to do?

 \Rightarrow the activity that can increase happiness the most!

Actually, we need not to be perfect :

Choose **randomly** amongst the **4 activities** providing the most hapiness.

The Game
Pathfinding
Decision making
Social interactions
Evolution in the franchise
Prospects and conclusion


Modeling human needs

Smart Objects
The Happyscape

Taking personalities into account

Improvement (the Sims 3)

Choose with a probability propotional to the hapiness gain :

Temperature/activity based on Maslow's Hierarchy of Needs.

Modeling human needs
Smart Objects
The Happyscape
Taking personalities into account

Smart Object paradigm

No logic in the sim \Rightarrow Logic in the **objects** (expandable!)

Inside an object (= 1 thread):

- Graphics/animation
- State
- Scripts (EDITH custom scripting language, in game editor)
- Advertising (what can it offer to the sim?)

Virtual objects (weather, conversations...)

Modeling human needs
Smart Objects
The Happyscape
Taking personalities into account

Object script

Example: the fridge

- Go to a counter
- Prepare the food
- Go to the stove
- Cook the food
- Go to the table (+ chair)
- Eat the food
- Go to the dishwasher
- Clean your plate

Modeling human needs Smart Objects

The Happyscape

Taking personalities into account

The Happyscape - Smart Terrain

1. Objects broadcast what they can offer

Modeling human needs Smart Objects

The Happyscape

Taking personalities into account

The Happyscape - Smart Terrain

2. Needs translated into happiness gain

Modeling human needs Smart Objects

The Happyscape

Taking personalities into account

The Happyscape - Smart Terrain

3. Pick randomly amongst the max

Modeling human needs Smart Objects The Happyscape Taking personalities into account

Taking personalities into account

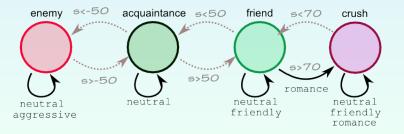
Modeling human needs Smart Objects The Happyscape Taking personalities into account

Taking personalities into account

- Fun different between playful and serious people (pinball/chess)
- Outgoing people's social need increase faster
- ...

Note: **distance** between the sim and the object is also taken into account by a small multiplicative factor

Pathfinding
Decision making
Social interactions
Evolution in the franchise
Prospects and conclusion


Social interactions

How do two sims interact with each other?

Social interaction model

- Based on a relation score between each two sims
- Score enables different interactions
- High-level automaton-like evolution

Social interaction model

- Actions have positive/negative effects depending on mood/personality/randomness
- Low-level rule-based mecanism

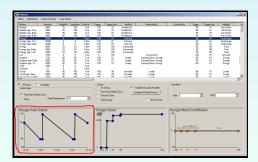
```
TryingToBe.Funny -> Neutral
TryingToBe.Funny && Repetition -> Boring
TryingToBe.Funny && LTR < -20 -> Insulting
TryingToBe.Funny && Target.GoodSenseOfHumor -> Funny
```

Level of detail Improvements Realistic simulation

Evolution in the franchise

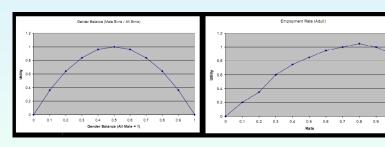
What changed between the versions?

Aging \Rightarrow evolution of the whole town



Level of detail

Improvements
Realistic simulation


Level of detail

Huge simulation : use different **level of details** "Script" an average behaviour

Town as an object

The town has **underlying desires** (gender ratio, employment rate) and can satisfy them by **actions** (birth, death, get job...)

Improvements

Hierarchical planning:

Instead of considering all possible actions, choose a house, then choose an object, then choose an action.

Commodity-Interaction map:

Create one "smart-terrain" map per need.

Commodity	Interactions
Bladder	Use(ToiletStall) Use(ToiletStall) Use(ToiletStall) Use(ToiletStall)
Hunger	Have Refreshing Drink(BarModern) Have Refreshing Drink(BarModern) (FridgeDrawer) (FridgeDrawer)
Energy	Nap(ChairLivingDesigner) Nap(ChairLivingDesigner) Drink Delicious Half-Caf Chocolate Lite Frothiccino with Caramel Spri
Hygiene	Take Shower(ShowerLoft) Take Bath(BathtubModern) Take Delightful Bubble Bath(BathtubModern) Take Shower(Shower
Fun	Pump Iron(WorkoutBench) Dance(StereoExpensive) Turn On(StereoExpensive) Strength Training(StereoExpensive) Take

Realistic simulation

New "needs" according to personality, time...

Examples:

- Welcome and entertain guest
- Steal (kleptomaniacs)
- Embarass people (inappropriate sims)

Also affects the range of available actions

Post-Mortem

Prospects
Questions
Sources

Post-Mortem

• Pathfinding : HDA*

Moderate reactions: complaints about sims getting stuck

• Decision making : Smart Objects

• Social interactions : Automata and rules

Those two aspects created a **semi-autonomous groundbreaking AI** which allowed a light user control and the generation of narratives ("fishbowl")

• Scaling up : Level of detail

Prospects

Adaptation to the user:

Despite its user-centered experience, the Sims lacks user-based adaptation mecanisms

⇒ Reinforcement learning for babies?

Questions

Thank you for listening

Sources - The Sims

- 97, Will Wright, The Soul of The Sims (source code) http://www.donhopkins.com/home/images/Sims/
- 01, Will Wright, Kenneth Forbus: Some notes on programming objects in The Sims http://www.qrg.cs.northwestern.edu/papers/Files/Programming_Objects.in_The_Sims.pdf
- GDC01, John Viega: "Those Darned Sims: What Makes Them Tick?" http://www.gdcvault.com/play/1013969/Those-Darned-Sims-What-Makes
- Spring 02 Kenneth Forbus: Simulation and Modeling: Under the hood of The Sims http://www.cs.northwestern.edu/, forbus/c95gd/lectures/The.Sims.Under.the.Hood.files/v3.document.htm
- GamesKB 04, Don Hopkins: "Trying to Create a Perfect Sim" http://www.gameskb.com/Uwe/Forum.aspx/games-the-sims/2867/Trying-to-create-a-perfect-Sim
 GDC 07, Jake Simpson: "Scripting and Sims2: Coding the Psychology of Little People"
- dbc v/, sake simpson . Scripting and simbs . Cooling the rsychology of Etter reple http://twwideo01.ubm-us.net/o1/vault/gdc05/slides/PG_Simpson_ScriptingAndSims2.ppt
- 07, A.J. Champandard, "Living with The Sims? AI: 21 Tricks to Adopt for Your Game" http://aigamedev.com/open/review/the-sims-ai/
- AIIDE 07, Richard Evans's talk reports by TaraTeich : http ://tara.teich.net/?s=aiide+2007
- AIIDE 09, Richard Evans: "AI Challenges in Sims 3" http://www.gdcvault.com/play/1012450/Modeling-Individual-Personalities-in-The http://intrinsicalgorithm.com/IAonAI/2009/10/aiide-2009-ai-challenges-in-sims-3-richard-evans/
- Al Game Programmers Guild Wiki : http ://gameai.com/wiki/index.php?title=The_Sims
- The Sims Wiki : http ://sims.wikia.com/
- StrategyWiki : http ://strategywiki.org/wiki/The_Sims_3/
- Carl's Sims 3 Guide : http ://www.carls-sims-3-guide.com

Sources - generic

- Wikipedia : http ://www.wikipedia.org
- Botea, Miller, Shaeffer (journal of Game Development 04): "Near Optimal Hierarchical Path-finding" http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.7041
- Video Game Charts : www.vgchartz.com