
Digital System

Microprocessor project

Fabrice Ben Hamouda, Yoann Bourse, Hang Zhou

2009-2010 : Semestre 1

Abstract

This paper describes our conception of a microprocessor, for the “Systeme Digital” course. We
will emphasize on the three main parts of the project, that is to say the netlist simulator, the assembly
translator, and finally the microprocessor itself. Our primary aim was to be able to simulate a simple
digital watch on this microprocessor. Furthermore, we chose to develop a microprocessor close to
the MIPS architecture so that we could use the compiler program we have done for another course
in order to compile Ocaml directly on our microprocessor.

1

Contents

I Netlist simulator 4

1 Simulator overview 4
1.1 Global description . 4
1.2 Netlist language . 4
1.3 Files, classes and main functions . 5

1.3.1 Input files . 5
1.3.2 Programming . 5

1.4 Executable file and flags . 7
1.5 Interpreting or compiling ? . 7
1.6 Functioning scheme . 7

2 Makefile & Compilation 8
2.1 Getting started . 8
2.2 Targets and options . 8
2.3 Requirements and troubleshooting . 8
2.4 Speed of simulator . 9

3 Simulation results 10
3.1 Theoretical considerations about required set of tests . 10
3.2 Full Adder . 10
3.3 Minus . 10
3.4 Counter modulo 2 . 11
3.5 Clock divider . 11
3.6 Counter modulo 24 . 12

4 Further Improvements 14
4.1 Diagram display . 14
4.2 The time parameter . 14
4.3 Boolean constants . 14
4.4 RAM/ROM primitives . 14
4.5 Circuit-based digital watch . 15

5 Doxygen documentation 15

II Assembly language and microprocessor specification 16

6 Overview 16
6.1 Schema . 17
6.2 Registers . 17
6.3 Carry and zero registers . 18

6.3.1 Carry register . 18
6.3.2 Zero register . 18

6.4 External interfaces . 18
6.5 Timer and sleep mode . 18

7 Instructions set 19
7.1 Real instructions . 19
7.2 Pseudo-instructions . 20

2

8 Assembly translation 21
8.1 Getting started . 21
8.2 Quick tour of the program code . 21

8.2.1 Parsing . 22
8.2.2 Handling of instructions . 22
8.2.3 Simulation . 23

8.3 Syntax . 23
8.4 Watch example . 23

III Microprocessor realisation 24

9 Realisation 24
9.1 PHP Netlist generation . 24
9.2 Presentation of involved circuits . 24
9.3 A new simulator flag . 25

10 Improvements 25
10.1 Seven Segments and Graphical Output . 25
10.2 Ocaml Compilation . 26

11 How to use our Simulator 26

12 Results 26
12.1 Digital watch . 26
12.2 Result Comparison . 27

References 27

3

Part I

Netlist simulator
This section describes the first step toward the simulation of a digital watch. The final result will be
based on a microprocessor that we will have created, and which will require a netlist simulator, that is
to say a program able to interpret and simulate logical circuits.

1 Simulator overview

1.1 Global description

This simulator was built in C++, mainly because this project immediately appeared to us under the
form of classes and pointers. Since the beginning, for purposes of performance, we wanted our simulator
to have two main modes : interpreting the data or compiling it. In the following subsections, you will see
how we translated circuits into text, how we treated this text by C++ programs and how we configured
the two modes of output.

1.2 Netlist language

We chose to use a language to describe netlists similar to the one displayed in the examples given in the
description of the project. The main motivations for this choice were the clearness and the simpleness of
the given language. Moreover we wanted to ease the reading of our work by the writer of the project’s
description. Finally, this syntax presented obvious advantages for the declaration of variables and user-
defined functions. You can see below an example of our syntax being used. Note that there are a few
technical specificities for practical purposes : the use of the keyword inst, the fact that a closed bracket
} cannot be followed by anything. But you may skip as many lines as you want between functions.
Note that our simulator is based on the following set of logical basic instructions which provide a base
to the boolean algebra : NOT, OR, AND, XOR, and the register. Register and negation have higher
priority than the binary operations, and there are no other priority rule, so use brackets in order
to avoid interpretation errors. Default interpretation is from left to right.

s,r = FullAdd(a,b,c){
s = aˆ bˆ c
r = (a & b) — ((aˆ b) & c)
}
Commentaries can be added by
ˆ means logical XOR
& means logical AND
— means logical OR

o = clk2(){
o=Z(c)
c=˜ Z(o)
}
˜ means logical NOT
Z represents a register
Note that the brackets {} are used to introduce a customized function which can
be used later with the label “inst”, meaning that you instantiate an occurrence of
such a circuit.

b,c = example (a1,a2,a3){
inst b,c = FullAdd(a1,a2,a3)
}

4

We will also have to specify the value of several input variables. The syntax we chose is similar to an
array whose columns are separated by a tabulation. It is possible to reproduce a line a certain amount
of times using the symbol *, or skip a cycle by an empty line (therefore every empty line creates a new
cycle with no forced modification). You may also try to force the value of a variable that is not an input.
It will take this value of the beginning of the cycle but may be overwritten by some other functions.
Below stands an example :

a1 a2 a3
0 0 1
0 1 0
∗5
1 1 0

1.3 Files, classes and main functions

1.3.1 Input files

• input.net
This files contains the netlist description of the used circuits. You must define custom circuits
before instantiating them.

• input.set
This files contains the default number of clock cycles, and the values of customized variables for
each cycle.

1.3.2 Programming

• main
This file is the core of the simulator, as in any C++ project. It loads the various modules (described
below) whenever needed. It defines the two possible ways to use the simulator : the compilation
or the interpretation. It is also in this file that while loops represent clock cycles.

• tools
Here are defined several tools, especially to manipulate vectors more easily.

• parserVar
This module creates an item of the settingfile class which can be seen as a flow to read the file
“settings.net”.

settingfile
The variable s contains the source file under the form of a stream.
Variable repeat record the number of line repetitions yet to come.
init settings initializes the global settings at the beginning of the program.
forced var is a function called every cycle in order to define the value of given
variables.

• parserNetlist
This file analyses input.net. The parser uses step variables to memorize its position in the syntax
analysis : (see the doxygen documentation for more informations)

5

Creating a function :
0 -outputs- = 1 -function’s name- (2 -inputs-) 3 -waiting for the bracket- {
4 -function core-
}

Instantiating a function :
-1 : no instantiating function
-2 : receive output of non instantiating function

The function ReadFunction analyses the text of a function : il calls the functions Process-
Expression which analyses a logical expression, and the functions ProcessName which are the
core of the creation of the various functions. They are all subfunctions of ParserNetList, which
handles as well the topological sort of the functions thanks to the subfunction SortlistOps.

• graph
The name of this file is due to the graph structure induced during the parsing, whose consequences
are present all over the program.

variable
This class represents a variable, identified by a name and a value. We register the
list of operations of which the variable is an input and we define several functions
to read or modify the variable’s parameters.

registerV
This class is our mean to deal with the problem of registers : every registerV contains
two pointers towards “input” variable and “output” variable : the function
SaveRegister() loads the value of the input and the function NextClockEdge()
copies it into the output. The internal value of the register allows an easy
instantiation of functions : only registers are copied, not the combinatorial graph.

operation
An operation is the heart of a function. Every object of this class contains two
variable* arrays pointing to the inputs and outputs of the operation, and a
functionInst pointer heading towards the function the operation is used in.

• functionUser

functionUser
This class is the global one, defining every user-customized function of which the
various circuits will be an instance. It contains global parameters shared by all
instances of a function such as input, outputs, registers and the list of oper-
ations sorted topologically.

• functionInst This is a leftover of a previous version of our project, still accessible through the
flag --nogc (no graph copy). Previously, functionUser was nothing but a generic pattern, and
real circuits were instances of functionInst, which used the pattern in order to compute. Yet,
this system had a major problem with combinatorial loops when the output of a function was
connected to one of its inputs, even through a register. In order to correct that shortcoming, we
decided that a circuit would not be an instance of functionInst, but a copy of functionUser to the
general functionUser which represent the whole circuit.

6

1.4 Executable file and flags

We allowed the use of flags in order for the user to set various option or parameters when calling the
executable file resulting from the compilation of our simulator. Following syntaxes are accepted :

simulateur [options] netlist
simulateur -h (for help and a total list of possible flags)

where main options are :
-v : displays comments about what the program is doing (verbose)
-q : hides the simulation results
-p period : length of a clock cycle (in seconds)
-c : compiling mode instead of interpreting
--cc bin : use “bin” compiler instead of gcc -s settings : path to the setting file
-n n : number of cycles
--column s : size of a column
netlist : path to the netlist file
--noits : no intermediate toposort (only final)

1.5 Interpreting or compiling ?

The compiling mode transforms the given circuit in a C program : sim.C and then compiles it. This
way, the circuit is an independent program and therefore a lot faster. On the other hand, it is impossi-
ble to specify or to force the value of variables with a setting file. Here is an overview of the two processes :

Compiling :
- Variables declaration (CPutDeclarations)
- Combinatorial computing (CPutCommands) whole users functions are copied, not only registers.
- Save of registers (CPutRegistersSave)
- Next clock, restoring registers (CPutRegistersNext)

Interpreting :
Every time an operation invoilving a user-created function is called :
- Next clock, restoring registers (NextClockEdge)
- Combinatorial computing (Eval)
- Save registers (SaveRegisters)

Note that as mentioned above, there is no longer several user-created functions : they are all embedded
in a global function representing the overall circuit, according to the following scheme.

1.6 Functioning scheme

7

2 Makefile & Compilation

2.1 Getting started

On Linux, open a command line console (in “simulateur” folder) and type :

• make 12345

• make watch : you will see a watch without microprocessor

To use compiling mode, you need GNU gcc compiler.
On Linux, just add option SIM NS FLAGS=-c.
Note that with --cc option you can specify options to gcc, for example optimization option like -O3 or
-O2.

If you want, you can use CodeBlocks : http://www.codeblocks.org. There is a CodeBlocks project.
Just open it.

2.2 Targets and options

We have created a Makefile to automatically compile the project and transform all *.php files (automatic
generation of complex netlists, see 4.5) into netlist *.net files and to simulate them using if possible
*.mem and *.set files. Important targets are :

• all : compile the project

• doc : compile this documentation

• doxygen : compile the doxygen documentation

• demo : execute all netlist

• 12345 : execute required for project (Full Adder, Minus, ...) netlist

• watch : print the watch (add some options to simulator to select the good period and the watch
output format)

• netlists/%.run : execute the netlists/%.net or netlists/%.php netlist

• democlean : delete all generated netlists

• clean : delete all generated files except documentation and “simulateur” executable

• mrproper : delete all generated files without any exception

There are a lot of options, you can see the Makefile to have more informations :

• TEST=yes : compare results of simulation with saved results (in *.res files)

• TEST=res : automatically generate *.res files (you have to verify that the content is correct)

• SIM FLAGS : flags for simulator

• SIM NS FLAGS : flags for simulator for target that do not use a setting file (we use it for testing the
compilation mode : SIM NS FLAGS=-c)

2.3 Requirements and troubleshooting

In order for the makefile to work correctly, you will need to have installed support of PHP.

8

http://www.codeblocks.org

2.4 Speed of simulator

To have an approximative idea of the speed of our simulator, you can execute the watch without forcing
the period :

• time make netlists/watch.run SIM FLAGS=‘‘-n 1000000 --watch’’

• time make netlists/watch.run SIM FLAGS=‘‘-n 1000000 --watch -c’’

The time command print the time needed to execute the simulation. You can see that compiling mode
is faster than interpreting mode. There is an overhead at the beginning because of time of compilation
but after that it is very fast. In addition, for real tests, it’s recommended to print nothing to stdout
(because it takes a lot of time) with flag -q for simulator and to use clock cycles.

9

3 Simulation results

3.1 Theoretical considerations about required set of tests

For the following circuits, at each cycle t ∈ N, we call state the list (z1(t), ...zm(t)) of values of output of
registers (zk) at the beginning of the cycle. At each cycle, inputs (i1(t), ..., in(t)) and state completely
define the value of others variables since others variables only depend on value of inputs and of output of
registers. In particular, state and inputs define outputs (let’s set (o1(t), ..., or(t)) be the vector of output
value at cycle t) and next output of registers (z1(t+1), ..., zm(t+1)) because the next output of a register
is exactly current value of input of this register. More precisely, there is one function f :

f : {0, 1}n+m → {0, 1}r+m

so that the following condition is true :

(o1(t), ..., or(t), z1(t + 1), ..., zm(t + 1)) = f(i1(t), ..., in(t), z1(t), ..., zm(t))

States are initialized that way :
(z1(0), ..., zm(0)) = (0, ..., 0)

We notice that if inputs are constants (or if there is no input), ~z(t + 1) = (z1(t + 1), ..., zm(t + 1)) only
depends on ~z(t) = (z1(t), ..., zm(t)) and on the constant inputs. Since there are only 2m possibilities for
the values of a vector in {0, 1}m, the sequence (~z(t))t∈N is periodic with a period less or equal than 2m.
In addition, if at cycle t and cycle t′ (t′ 6= t), states are identical, the period is less than t′ − t.

In particular, you can notice that if ~z(t) = ~z(t + 1) for an cycle t, the state is never modified when
the circuit is in the state ~z(t) and when input is i(t).

3.2 Full Adder

s,r = FullAdd(a,b,c){
s = aˆ bˆ c
r = (a & b) — ((aˆ b) & c)
}

a b c
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
∗9

Simulation results :
s r

0 0 0
1 1 0
2 1 0
3 0 1
4 1 0
5 0 1
6 0 1
7 1 1
· · ·

This circuit doesn’t involve any register : any output will require no more than one clock cycle in order
to be computed. Therefore, we only need to try all the possible combinations for a, b and c (provided
by magic masks).

3.3 Minus

The minus function is equivalent to negate the input and then add one to it. This means that the first
1 (the least important one) will keep the value 1. All the 0 before will not change, and after it, 0 will be
turned into 1 and 1 into 0. That’s the property we will have to check on our circuit.
...100100→ negation : ...011011→ incrementing : ...011100
In order to prove this function, we modified the netlist so as to print the output of the register (the

10

only state of the circuit). As long as input is x = 0, the state c is 0 (constant input). An input x = 1
changes the state c to 1 and output y = 1. After that, all bit are changed to their opposite and that
never changes the state c (because c(2) = c(3) = 1 for input x = 0 and c(3) = c(4) = 1 for input x = 1).
We have therefore proved correctness of the circuit with the 5 first lines of simulation results.

y,c = minus b(x){
y = x ˆ c
c = Z(x—y)
}

x
0
1
1
0
1
∗12

Simulation results :
y c

0 0 0
1 1 0
2 0 1
3 1 1
4 0 1
· · ·

3.4 Counter modulo 2

We need to check that the counter only counts clock cycles when x=1, and that s + 2r corresponds to
the number of such cycles, modulo 2. With complete simulation, you can see that when the input is
x = 0, this do not change the state (because s(0) = s(1) = 0 and s(2) = s(3) = 0). Hence the number
of cycle with input 0 between two cycles with input 1 has no importance. There is only left to verify
that, in all states (s = 0 or s = 1), when input is 1, counter increments itself (s being the main digit
and r the overflow carry) and it is the case. The 5 first lines of simulation results are sufficient to prove
correctness of the circuit.

s,r = cm2(x){
s = Z(x ˆ s)
r = x & s
}

x
1
0
0
1
0
1
∗11

Simulation results :
r s

0 0 0
1 1 0
2 1 0
3 1 1
4 0 0
5 1 1
6 0 0
7 1 1
· · ·
· · ·

3.5 Clock divider

This circuit doesn’t need any input (only the specification of the number of clock cycles to execute). we
need to verify that it produces a periodic output. Hence, we just need to check 22 = 4 values to be sure
that it is a clock divider : first 4 lines are enough.

11

o = clk2(){
o=Z(c)
c=˜ Z(o)
}

∗16

Simulation results :
o

0 0
1 1
2 1
3 0
4 0
5 1
6 1
7 0
8 0
· · ·

3.6 Counter modulo 24

This counter is based on a counter modulo 32 = 25 that is to say 5 CM2 in a row. We used the fact
that the CM2 contain actually two different numbers : the current number in outputs si and the next
number to come, in zi, just before the register. The difficulty to this counter is to reset the outputs when
the counter reaches 24. We decided to use an additionnal feedback condition able to reset all si, that
is to say that we intercept the future number to come when it is . . . 0011000 = 24 and replace it with
. . . 00000 = 0[24].

For purposes of legibility, we detailed the first part of the input (that is to say 1 / *23 / 0 / *5).

12

s,r,z = cm2m(x,v){
z = x ˆ s
s = Z(z) & v
r = x & s
}

s5,s4,s3,s2,s1 = cm24(y){
tt = ˜ (z4 & z5)
inst s1,r1,z1 = cm2m(y,tt)
inst s2,r2,z2 = cm2m(r1,tt)
inst s3,r3,z3 = cm2m(r2,tt)
inst s4,r4,z4 = cm2m(r3,tt)
inst s5,r5,z5 = cm2m(r4,tt)
}

x
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
∗27

Simulation results :
s5 s4 s3 s2 s1

0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 1 0
3 0 0 0 1 1
4 0 0 1 0 0
5 0 0 1 0 1
6 0 0 1 1 0
7 0 0 1 1 1
8 0 1 0 0 0
9 0 1 0 0 1
10 0 1 0 1 0
11 0 1 0 1 1
12 0 1 1 0 0
13 0 1 1 0 1
14 0 1 1 1 0
15 0 1 1 1 1
16 1 0 0 0 0
17 1 0 0 0 1
18 1 0 0 1 0
19 1 0 0 1 1
20 1 0 1 0 0
21 1 0 1 0 1
22 1 0 1 1 0
23 1 0 1 1 1
24 1 0 1 1 1
25 1 0 1 1 1
26 1 0 1 1 1
27 1 0 1 1 1
28 1 0 1 1 1
29 0 0 0 0 0
30 0 0 0 0 1
31 0 0 0 1 0
· · ·
52 1 0 1 1 1
53 0 0 0 0 0
· · ·

13

4 Further Improvements

4.1 Diagram display

To improve the legibility of the outputs, we have imagined another display of the output : instead of 0
and 1, the --diag flag causes the output to be a frieze where 0 is bottom and 1 is top, as displayed on
the example.

4.2 The time parameter

In order to simulate the quartz periodic signal for the microprocessor, we have decided to allow the user
to set the duration they want for a clock cycle. This is done thanks to an additional loop and the use of
the function gettime of day.

4.3 Boolean constants

We added the possibility to use boolean constants 0 and 1 directly in the netlist, therefore avoiding the
need to declare an alimentation like VDD.

4.4 RAM/ROM primitives

As a transition toward the work that is simulating a whole microprocessor, we have added to our project
ROM/RAM primitives. You can instantiate ROM or RAM with the following code :

ram do1, do2 = name(ao2, ao1, ao0, w, ai2, ai1, ai0, di1, di0)
rom do1, do0 = name(ao2, ao1, ao0)

First character : Data or Address
Second character : In or Out, that means for writing (in) or for reading (out)
Third character : level of bit (2 being the most significant bit)
w : write input data into input address if equal to 1

Size of address bus and data bus are determined by the number of arguments and returned values. More
precisely, if there are n returned values and m arguments, data bus is n bits length and address bus is
m−n bits length for ROM and m−n−1

2 bits length. The order of argument is this mentioned above. Size
of memory is 2a if address bus has a bits. Names of variables have no importance.

Reading is executed before writing. You can also define RAM and ROM through a *.mem file using
the flag : -m file. The content of the file should follow that pattern, with the keyword mem :

mem:Name
3
2
12
mem:Name2
...

This uses a special functionInst called functionMem, which stores the data in a data vector.

14

4.5 Circuit-based digital watch

The conclusion of this simulation work was the simulation of a digital watch based on complex circuits
as describes in the courses provided by Mr Vuillemin. The netlists (”simulateur/netlists/watch.php“) of
those gigantic circuits were created thanks to PHP scripts which offered a very clear way to display text
in loops or recursive calls. It offered a nice transition towards the microprocessor-based digital watch,
with for instance the creation of a graphic interface based on 7-segments display, activated by the flag
--watch. This subject will be later discussed in our next report.

5 Doxygen documentation

A detailed documentation is available in the folder “simulateur/doc”, describing more precisely every
file, class and function. Just type make doxygen to compile it.

15

Part II

Assembly language and microprocessor
specification
We will now describe the specifications and features of the microprocessor we will be using to simulate a
digital watch, thanks to the netlist simulator previously conceived. Assembly programs will be translated
into digital instructions that the microprocessor will interpret in order to use correctly logical circuits
for computation. The translation from assembly to machine language is performed by a program which
is also able to simulate the expected results of the assembly code.

6 Overview

The main features of our microprocessor are :

• 16 registers of 16 bits

• one 16 bits clock timer

• 16 bits instructions

• one instruction per clock cycle

• up to 64 K instructions (ROM)

• up to 2×64 KB of data RAM (16 bits data length)

• up to 8 (+2 for the timer) output ports and 8 (+2 for the timer) input ports of 16 bits

We chose to develop an architecture close to MIPS, because that is the microprocessor we use in
the course “Langage de programmation et compilation”. Therefore, we hope to be able to combine this
handmade microprocessor with the compiler we have to build for this course, so that we will have traced
the whole path from CAML instruction to circuit execution. Some modifications will be needed to adapt
the compiler : our microprocessor doesn’t have multiplication or division instructions, and uses 16 bits
integer instead of 32. Nevertheless, those changes will be minor because even if our microprocessor has
fewer register and fewer instructions, the compiler will not use all MIPS registers and instructions, and
most of the instructions we lack can be simulated by several of our instructions.

16

6.1 Schema

6.2 Registers

There are 16 registers of 16 bits, labeled by integers : W0 to W15. You may use them the way you want,
but we advise you to use the following conventions, inspired from MIPS conventions :

MIPS equivalent Usage
W0 $V0 expression evaluation and results of a function
W1 $V1 expression evaluation and results of a function
W2 $A0 argument 1
W3 $A1 argument 2
W4 $A2 argument 3
W5 $A3 argument 4
W6 $S0 saved temporary (preserved across call)
W7 $S1 saved temporary (preserved across call)
W8 $S2 saved temporary (preserved across call)
W9 $T0 temporary (not preserved across call)
W10 $T1 temporary (not preserved across call)
W11 $T2 temporary (not preserved across call)
W12 $T3 temporary (not preserved across call)
W13 $SP stack pointer
W14 $FP frame pointer
W15 $AT temporary register used by pseudo-instruction (see 7.2)

$RA return address

Thanks to jmp* instruction with two arguments (see instructions set, section 7), you can save return
address in any register (instead of only W15) when you jump to another point of the assembly program.
That way, you can create functions calls. The mechanism is nearly the same as in MIPS architecture
(see [1]) with jla MIPS instruction.
Our microprocessor also uses two additional registers in conditional jumping, registers carry and zero,
described below.

17

6.3 Carry and zero registers

One of the most important difference with MIPS architecture is the lack of conditional instructions
like MIPS beq (see [1]). This lack is compensated by two 1 bit pseudo-registers carry and zero. They
are unaccessible to the user. They are automatically updated by most instructions. We have some
instructions providing jump conditioned on the value of those two registers.

6.3.1 Carry register

Carry register is only updated by arithmetic operations (addu, subu, sub, sra, srl instructions, and
pseudo-instructions which use these real instructions - see instructions set, section 7).

• addu Wdst Wsrc1 Wsrc2 : carry will be set if Wsrc1 + Wsrc2 ≥ 216 (values considered as unsigned)

• subu Wdst Wsrc1 Wsrc2 : carry will be set if Wsrc1 −Wsrc2 ≥ 0 (values considered as unsigned)

• sub Wdst Wsrc1 Wsrc2 : carry will be set if Wsrc1 −Wsrc2 ≥ 0 (values considered as signed)

• sra Wdst Wsrc : carry is the less significant bit of Wsrc

• sla Wdst Wsrc : carry is the less significant bit of Wsrc

For example, suppose that W0 = 10 and W1 = −4 = 216 − 4 :
- addu W2 W0 W1 will set carry
- subu W2 W0 W1 will clear carry because 10 < 216 − 4
- sub W2 W0 W1 will set carry because 10 ≥ −4

6.3.2 Zero register

Zero is updated after each instruction using a destination register (Wdst in 7.instruction set). If the new
value of Wdst is 0, zero will be set, otherwise it will be cleared.
That way, you can easily jump if two registers are equal by jumping if the result of a xor on those two
register is 0.

6.4 External interfaces

Programs can communicate with other module of the CPU through input and output instructions. Here
are the current mapping of address :

Input Output
0-7 real 16 bits input port 0-7 real 16 bits output port 0-7
8 16 bits timer period
9 16 bits timer

Default values are 0.

6.5 Timer and sleep mode

Our microprocessor has a 16 bits timer, that is to say a counter modulo period incremented at each clock
cycle. A 0 period corresponds to a counter modulo 216 (default). You can set its period and its value
with input and output instructions (see above).

Warning : If you change the period to a value less than or equal to current timer value, the
counter will not be reset. Hence it is recommended to manually reset counter (by setting it to 0) after
changing its period.

You can put microprocessor into sleep mode with sleep instruction. Nothing is done until the timer
reaches its period. This feature is important for the digital watch, because we need to increment seconds
with the good period.

18

7 Instructions set

You will find below the set of instructions used by our microprocessor. Assembly programs used with
our translator can use real microprocessor instructions or pseudo-instructions that will be converted into
several real instructions by the translator.

We will use the following notations :

Wx register Wx

K (n) constant of n bits 4, 8 or 16 bits
lo(*) low bits (half) of * 4 or 8 bits
hi(*) high bits (half) of * 4 or 8 bits
addr(label) address of the label 16 bits

7.1 Real instructions

Here are real instructions, the four last columns displaying the instruction code saved in a ROM program.

19

ALU instructions
4×4 bits

addu Wdst Wsrc1 Wsrc2 Wdst ←Wsrc1 + Wsrc2 0 dst src1 src2
adduc Wdst Wsrc1 Wsrc2 Wdst ←Wsrc1 + Wsrc2 + carry 1 dst src1 src2
subu1 Wdst Wsrc1 Wsrc2 Wdst ←Wsrc1 −Wsrc2 2 dst src1 src2
sub1 Wdst Wsrc1 Wsrc2 Wdst ←Wsrc1 −Wsrc2 3 dst src1 src2
xor Wdst Wsrc1 Wsrc2 Wdst ←Wsrc1 xor Wsrc2 4 dst src1 src2
or Wdst Wsrc1 Wsrc2 Wdst ←Wsrc1 or Wsrc2 5 dst src1 src2
and Wdst Wsrc1 Wsrc2 Wdst ←Wsrc1 and Wsrc2 6 dst src1 src2

move Wdst Wsrc Wdst ←Wsrc 8 dst src 0
not Wdst Wsrc Wdst ← not Wsrc 8 dst src 1
sra Wdst Wsrc Wdst ← shift2 right arithmetic3 of Wsrc 8 dst src 2
srl Wdst Wsrc Wdst ← shift2 right logical of Wsrc 8 dst src 3

Jump instructions
jmp Wsrc Jump to Wsrc 9 0 src 0
jmpz Wsrc Jump to Wsrc if zero 9 0 src 2
jmpc Wsrc Jump to Wsrc if carry 9 0 src 4
jmpnz Wsrc Jump to Wsrc if non zero 9 0 src 3
jmpnc Wsrc Jump to Wsrc if non carry 9 0 src 5

jmp Wsrc Wret Jump to Wsrc 9 ret src 8
save next address to Wret

jmpz Wsrc Wret Jump to Wsrc if zero 9 ret src 10
save next address to Wret

jmpc Wsrc Wret Jump to Wsrc if carry 9 ret src 12
save next address to Wret

jmpnz Wsrc Wret Jump to Wsrc if non zero 9 ret src 11
save next address to Wret

jmpnc Wsrc Wret Jump to Wsrc if non carry 9 ret src 13
save next address to Wret

Load/Store instructions
lhi4 Wdst K (8) hi(Wdst)← K 10 dst hi(K) lo(K)
lli3 Wdst K (8) lo(Wdst)← K 11 dst hi(K) lo(K)
lh Wdst Wsrc Wdst ← RAM(Wsrc) 8 dst src 4
sh Wsrc1 Wsrc2 RAM(Wsrc2) ←Wsrc1 12 0 src1 src2

Input/Output - other instructions
output K (4) Wsrc output(K) ←Wsrc 13 0 K src
input Wdst K (4) Wdst ← input(K) 8 dst K 5

sleep Sleep (see 6.5) 8 0 0 8

7.2 Pseudo-instructions

Since real instructions lack some important practical functions, we have created pseudo-instructions.
Every time the assembly translator sees such an instruction, this is immediately translated into real
instructions.

1The only difference between sub and subu is the carry modification (see 6.3.1).
2One bit shift. Notice that left shift can be done with addu instruction.
3Arithmetic means that sign bit is copied.
4Instructions lli and lhi do not modify or erase the unused part of the register, respectively hi(Wsrc) and lo(Wsrc).

20

Warning : Some pseudo-instructions use W15 registers without saving it.

Load/Store pseudo-instructions
li Wdst 0 xor Wdst Wsrc Wsrc

li Wdst K (16) lhi Wdst hi(K)
lli Wdst lo(K)

la Wdst label li Wdst addr(label)

Arithmetic pseudo-instructions
addui Wdst K (16) Wsrc li W15 K

addu Wdst W15 Wsrc

adduci Wdst K (16) Wsrc li W15 K
adduc Wdst W15 Wsrc

subui Wdst K (16) Wsrc li W15 K
subu Wdst W15 Wsrc

subi Wdst K (16) Wsrc li W15 K
sub Wdst W15 Wsrc

8 Assembly translation

The second step of our project was to create a program able to translate assembly language into mi-
croprocessor instructions (16 bits integers). The program has also a simulation mode, which enable the
user to overview the content of the register through the time, so that they can fix their programs.

8.1 Getting started

Like for the simulator, you may compile the assembly translator by Code Blocks or our own makefile
(just type make in “asm” folder). You will then be able to use the program “asm” with the following
syntax :

asm [options] sources
asm -h for help

Where option are :
-v for verbose mode
--sim to launch the simulation after asembly translation
--rc to display the content of the registers during simulation
-p 0 period of one cycle
-n 0 maximum number of cycles
--watch display a watch instead of just printing the contents of outputs (see bellow)

In the watch mode, output ports 0 to 5 corresponds to a 7-segment digits (each bit is a segment - the
order is the traditional order : less significant bit is the upper segment). The simulator display the watch
each time you wrote something in output port 0. That’s why you have to update this port at the end,
when you want to update the watch. Please see example “asm/tests/watch.asm” for more informations.

Notice that targets Makefile are nearly the same as simulator ones. You can so automatically run
tests by typing : make demo TEST=yes. This will run simulator one each *.asm file of folder “asm/tests”
for 1000000 cycles and compare the results with *.res file.

8.2 Quick tour of the program code

Here is a brief description of the way the assembly translator works. We hope it will be helpful if you
ever have to look up the source code.

21

8.2.1 Parsing

The file is first parsed in the parser module. A simple handmade loop gets the arguments and the
name of the instructions. A counter stores the number of instructions already studied so that the parser
stores with every label name the number of the instruction it corresponds to. Pseudo-instructions may
increment the counter more than once because they may introduce a lot of new real instructions. All
those instructions are stored in a vector.

8.2.2 Handling of instructions

A map module stores the main informations about instructions and pseudo-instruction by enabling the
creation of a table associating to every string name a special structure.

typedef struct instr info
instr type type; Instructions are sorted by type to enable global verifications
int code; The code is the first of the 4 bits of the instruction code in the ROM
int exn; See below
int nb int arg; Number of expected registers or integer constants in the arguments.

The purpose of exn is double : A positive exn is the complementary identification of the instruction,
that is to say the fourth of 4 bits of the instruction code in the ROM if this bit is used to describe the
instruction.
A negative exn (case of pseudo-instructions) contains the number of real instructions this instruction
stands for.

The map module provides the general structure of the instruction, but the parser builds a specific
object for every different instruction :

class instruction
friend class src file;

private :
instr type type;
int code; Instruction code (4 bit integer)
int instr code; ROM code (16 bit integer)
int exn;
string name;
int arg[3]; The initial int arguments will be completed later to form the 3 last 4
bits part of ROM instruction code
string s arg; String argument for instruction dealing with labels
int line; Line in the assembly program to display errors
int nb int arg;

public :
instruction(string name , int cline, table instr *table); Constructor from
the generic informations
void print(); Print name and arguments.
void printc() { cout << instr code << endl;};
void error(string msg);
void verif(table label *labels, vector<instruction> *vect,
vector<instruction>::iterator *it, bool verbose); See below

bool execute(int registers[18], vector<instruction>::iterator *it,
vector<instruction>::iterator begin, int ram[SIZE RAM], unsigned
short inputs[NB IO], unsigned short output[NB IO], bool watch); See
simulation

22

A simple loop on all the instructions stored in a vector enables to replace labels by the address of the
instruction they correspond to, and replace pseudo-instructions by the real instructions they stand for.
The ROM code of the instruction is also computed. All of this corresponds to the function verif.

8.2.3 Simulation

The simulation of assembler in C++ has to simulate several aspects of the real microprocessor. RAM,
input and outputs are represented by tables (integer or short). So are the registers. Note that carry and
zero are the 16th and 17th elements being used to simulate carry and zero register.
The actual simulation is executed by calling the execute(...) function of every instruction in the vector.
It reacts differently based on the code and arguments of the function, simulating all the operations
required.

8.3 Syntax

The assembly language recognized is very close to the syntax of microprocessor instructions. Below
stands an example of the syntax used.

label1 :
label2 : instr arg1 arg2 arg3

instr arg1 arg2 arg3 ; comments

Instructions begin after a tabulation, and are separated of labels by colons. You can add comments after
a semicolon. instr is the string corresponding to the name of the real or pseudo-instructions in section
7 page 19. argi are most of the time registers names, but they can also be constant integers, or label
names.
You can find detailed examples in the .asm files of our project (“asm/tests” folder). Here are a few
examples of complete instructions.

addui W5 W5 1
sub W15 W5 W6
la W15 watch

8.4 Watch example

Thanks to this translator, we were able to program a digital watch in assembly language, in order to run
it on our microprocessor. You may find the code of the program in the “asm/tests/watch.asm” file.
You can directly simulate the watch with the command :

make watch

The result will be printed with the 7-segment interface we introduced before.
There is also a watch which count the time from 23:59:59 to 00:00:00. Just type :

make watch2

23

Part III

Microprocessor realisation
This part will deal with the use of the aforementioned tools in order to create a full working micro-
processor. That is to say we must now define electronic circuits that we will simulate thanks to the
netlist simulator in order to run a digital watch assembly program (translated to machine language in
the previous part).

9 Realisation

9.1 PHP Netlist generation

The first problem we had to deal with was that a microprocessor required complex circuits that could
be huge. Writing them by hand would be an overwhelming task resulting undoubtly in many errors. We
needed an automatic generation of such complex netlists. Loops and recursions were required.
On the other hand, we didn’t want to add such functions to our netlist language. We wanted our netlists
to represent exactly the real circuit, and not be a higher level description of the circuit. Therefore, we
chose to add a special step before netlist simulation, that is to say the generation of complex netlists.
To that aim, we chose to use PHP, because it was initially designed as a preprocessor for webpages and
therefore enables a very easy manipulation of text (and an easy way to output text). In a few files
designed to be used as “libraries”, we programmed the most important functions (lists, mux operator...)
which would later be used by all our PHP netlists. We also designed a counter library, enabling the
creation of any counter modulo v (used in particular for the sleep instruction).
PHP files are automatically compiled toward .net files. That way, the initial PHP script can benefit from
loops and recursion of PHP language, but stay close to the real netlist language (thanks to the possibility
to add PHP code between tags : <? . . .? > anywhere). Moreover, the final .net netlist contains an exact
description of the final circuit.

9.2 Presentation of involved circuits

We designed those circuit trying to be as general as possible. Therefore, even if the circuits operate on
16 bits integers, this can easily be changed in most cases thanks to a PHP parameter.

• AddSub :
This circuit is the core of the aritmetic operation. It gets as inputs two 16 bit integers, plus 3
extra bits : the carry, a bit containing the information of whether or not the previous numbers are
unsigned, and a bit containing the information about the operation to do (addition or substraction).
The output is a 16 bit integer, and a new carry.

• Registers :
Registers are represented by a small circuit dealing with a 16 bit integer : it is a loop (the output
stays the same) unless the parameter w (for write) is true, in that case the output will be changed
to a 16 bit integer given in input.

• Logical operations :
Logical operation are implemented thanks to the logical gates which apply the operation on every
bit.

• Main :
The circuit we call main has the same inputs and outputs than the microprocessor. The interpre-
tation of the instructions is eased by an intelligent design of their syntax : the second argument is
always the destination, the third one is always the source.

24

ROM
Instructions

counter
add by one or

change by jump

Select
4 bits

jump

Source1
4 bits

Source2
4 bits

Destination
4 bits

addu

subu
.
.
.

xor

16 bits

16 bits

Mux

16 bits

16 bits

16 bits

ALU carryzero

16 bits

1 bit registers

Figure 1: Netlist organization

9.3 A new simulator flag

Outputs (and inputs) of microprocessor netlist are quite different from netlist watch one (see 4.5) and of
any other circuit : there are 8 ports of 16 bits and two other bit : one toggles each time microprocessor
has performed an output and the other each time microprocessor has performed an input.
In normal mode, simulator should print all outputs each time microprocessor has performed an output.
In watch mode (graphical watch or old watch mode), simulator should update watch only when needed
(and should use different outputs as netlist watch mode). That’s why we have added a new flag to
simulator : --micro.

10 Improvements

10.1 Seven Segments and Graphical Output

We have added a new mode to your simulator : graphical watch (flag --watch2. It’s the same mode
as watch mode (see 4.5) except that output is graphical (there is a screenshot page 26). You will need
WxWidgets to compile the simulator. If you don’t have this library, you can disable this new mode by
adding USE WX=no in make command line.

a

b

c

d

e

f g

We use seven bits to represent segments a to g. For convenience, instead of providing each segment with
two images for the opposite states, we just regard all vertical segments to be the identical, and the same
for horizontal segments. In this way, we only need four patterns to represent any digit. Notice that the
colon used to separate hour and minute (as well as minute and second) need another image, hence five
different images suffice to simulate the watch.

25

10.2 Ocaml Compilation

Our compiler mimo is the work of the compilation course, while the rule is a bit different from that of
MIPS in these 3 espects:

1. Instead of using 32 registers of 32 bits, here 16 registers of 16 bits suffice.

2. The multiplication, division, modulo instructions are replaced by software function.

3. The conditional jump instruction in MIPS is converting by xor or sub followed by jmpz, jmpnz,
jmpc and jmpnc (the definition is in 2.1 ALU instructions) because our jump operations are relating
to the registers zero and carry.

4. The system call instruction in MIPS is substituted by input, output and sleep instructions
and by some software functions (for allocation data on heap for example). There are 8 gates for
input and output respectively, so in this way, we can output the 7 segments information of a digit
simultaneously. Notice that the print int instruction in MIPS corresponds to output in port
0, and print newline instruction corresponds to output 1 in port 1.

11 How to use our Simulator

The Makefile in “simulateur” folder enables you to automatically compile, assemble and simulate with
microprocessor netlist any assembly or Ocaml file. Just type make name.asm.run or make file.ml.run.

Here are examples :

• make ../asm/tests/watch.asm.run SIM FLAGS="-n 01 --watch2" : run the assembly watch at
the maximum speed (seconds printed are not real seconds) and use graphical watch mode.

• make ../asm/tests/watch.asm.run SIM FLAGS="-n 0 --watch -p 0.005" : run the assembly
watch at the correct period (0.05 seconds - correspond to period loaded in period timer of micro-
processor at the beginning of the assembly code) and use old watch mode2.

• make ../mimo/testMicro/watch.ml.run SIM FLAGS="-n 0 --watch2 -p 0.0001 -c" : run the
Ocaml watch in compilation mode at the correct period (0.0001 seconds - correspond to period
loaded in period timer of microprocessor at the beginning of the assembly code).

If you prefer, you can also use “start.py” script which enables you running any of these examples easily
(type “3c” and enter to run last item for example).

12 Results

12.1 Digital watch

After we programmed in Ocaml, compiled by mimo, and simulated using the previous procedure, finally
we get a real watch which looks like the following:

1-n 0 enables you to run simulator infinitely - otherwise, it stops it after 16 cycles.
2In this old mode, watch is printed each time any digit is modified. Hence you can see 00:00:09, 00:00:19 and then

00:00:10. (00:00:19 appears very little time). This is the default behaviour in a real circuit because our microprocessor
can’t change all its outputs at the same time.

26

12.2 Result Comparison

We compare the execution time for Asm, Netlist and Ocaml mode, both with and without the compile
option (-c) for each of them. The testing time should not be too short, otherwise the time for pretreatment
of the Compilation mode would influence our comparison. Here we take 1 min for example: in every
mode, after the watch has run for 1 min, we read the time showed at that moment to see how many
seconds already passed; this number multiplied by the number of cycles per second (printed - not real
second) of this mode yields the total number of instructions executed, as following :

Netlist (4.5)

Asm (8.4)

Ocaml (12.1)

Compilation Mode Interpreting Mode

6.0× 106 1.5× 106

0.96× 106 0.09× 106

0.96× 106 0.10× 106

Speed Comparison between Different Modes and Different Watches

You can see that speed of ASM watch is nearly the same as speed of Ocaml watch : it is normal since
netlist is the same : this is microprocessor netlist.

Result Analysis:
Our compiler is not much optimized, as seen in the result. But the important aspect is that it works
correctly in simulating our watch, and this is the first step toward an excellent simulator. The defect
makes us realize the gap between our simulator (which is the work in one semester) and a top level
simulator (which is improved for several decades), and arouses our interest in digital system to a great
extent. In our further studies, we will try to find the answer to the improvements step by step so that
one day we could catch up or even exceed the existing technology of simulators.

References

[1] Assemblers, Linkers, and the SPIM Simulator, James R. Larus, http://pages.cs.wisc.edu/

~larus/HP_AppA.pdf, novembre 2009

27

http://pages.cs.wisc.edu/~larus/HP_AppA.pdf
http://pages.cs.wisc.edu/~larus/HP_AppA.pdf

	I Netlist simulator
	Simulator overview
	Global description
	Netlist language
	Files, classes and main functions
	Input files
	Programming

	Executable file and flags
	Interpreting or compiling ?
	Functioning scheme

	Makefile & Compilation
	Getting started
	Targets and options
	Requirements and troubleshooting
	Speed of simulator

	Simulation results
	Theoretical considerations about required set of tests
	Full Adder
	Minus
	Counter modulo 2
	Clock divider
	Counter modulo 24

	Further Improvements
	Diagram display
	The time parameter
	Boolean constants
	RAM/ROM primitives
	Circuit-based digital watch

	Doxygen documentation

	II Assembly language and microprocessor specification
	Overview
	Schema
	Registers
	Carry and zero registers
	Carry register
	Zero register

	External interfaces
	Timer and sleep mode

	Instructions set
	Real instructions
	Pseudo-instructions

	Assembly translation
	Getting started
	Quick tour of the program code
	Parsing
	Handling of instructions
	Simulation

	Syntax
	Watch example

	III Microprocessor realisation
	Realisation
	PHP Netlist generation
	Presentation of involved circuits
	A new simulator flag

	Improvements
	Seven Segments and Graphical Output
	Ocaml Compilation

	How to use our Simulator
	Results
	Digital watch
	Result Comparison

	References

