Leveraging spatial memory for shortcuts through mid-air deictic pointing using Microsoft Kinect

> Yoann Bourse directed by Eric Lecolinet

IAD Master, research internship 2012

Presentation plan

- Research question
- Pointing capabilities
- Interaction techniques
 - SMM : Spatial Marking Menus
 - SPS : Spatial Pointing Shortcuts
- 4 Evaluation
 - Protocol
 - Measures
 - Help usage
 - User perception
 - Qualitative observation

5 Conclusion

A future home...

... with lots of functions

4 / 27 Yoann Bourse directed by Eric Lecolinet

Our problem

- Shortcut management : Fast, occasional, sporadic ⇒ Micro-interaction techniques
- Couch-interaction : In air, no additional device ⇒ Low-cost depth camera : Kinect
- Huge memorization capacity
- Easy and fast learning : novice \rightarrow expert transition

Our problem

- Shortcut management : Fast, occasional, sporadic ⇒ Micro-interaction techniques
- Couch-interaction :

In air, no additional device ⇒ Low-cost depth camera : Kine

- Huge memorization capacity
- Easy and fast learning : novice \rightarrow expert transition

Our problem

• Shortcut management : Fast, occasional, sporadic

 \Rightarrow Micro-interaction techniques

• Couch-interaction :

In air, no additional device \Rightarrow Low-cost depth camera : Kinect

- Huge memorization capacity
- Easy and fast learning : novice \rightarrow expert transition

Our problem

• Shortcut management : Fast, occasional, sporadic

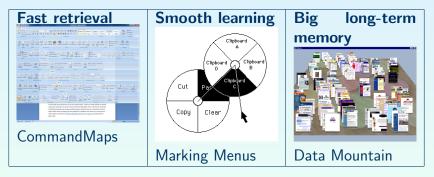
 \Rightarrow Micro-interaction techniques

• Couch-interaction :

In air, no additional device \Rightarrow Low-cost depth camera : Kinect

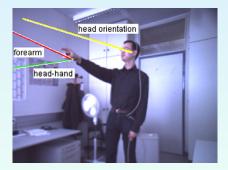
- Huge memorization capacity
- Easy and fast learning : novice \rightarrow expert transition

A similar problem, a different time...


6 / 27 Yoann Bourse directed by Eric Lecolinet

The method of loci

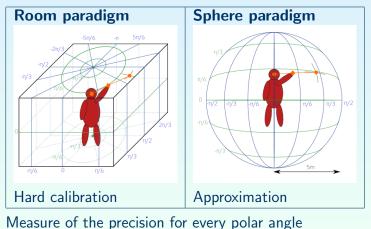
Spatial cognition


Plays a major role in performance in user-interfaces

Can even leverage proprioception

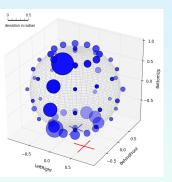
Pointing

"What you point is what you get"



Validation by closing hand

9 / 27 Yoann Bourse directed by Eric Lecolinet


Pointing challenge

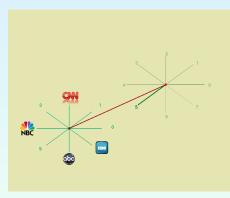
Inferring the environment from partial imprecise information

10 / 27 Yoann Bourse directed by Eric Lecolinet

Precision of the system

- No big difference between paradigms
- Small loss of precision when not centered
- \bullet No difference between θ and ϕ precision
- Big deviation to ground truth (40cm) but low standard deviation (10cm)

Conclusion


SMM : Spatial Marking Menus SPS : Spatial Pointing Shortcuts

SMM : Spatial Marking Menus

• In-air marking-menu :

2 directions (hierarchical) Relative movement

- Limited capacity (8x8)
- Oblivious to the environment
- Manipulating on a virtual plane
- Interactive (partial) feedback

SMM : Spatial Marking Menus SPS : Spatial Pointing Shortcuts

SPS : Spatial Pointing Shortcuts

Conclusion

- Novel microinteraction : direct deictic pointing based on the environment
- "Unlimited" capacity
- Closest item selection
- Double feedback mechanism : - Imprecise "map"

(approximate and relative position)

- Precise audio on hoover

Protocol Measures Help usage User perception Qualitative observation

Techniques evaluation

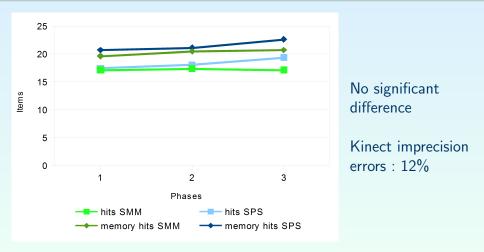
Protocol : starts with example, position items, 3 learning phases, 1 phase without feedback

- Measure the use of feedback (on-demand help)
- Measure kinect-related errors : The experimenter asks where the subject wanted to point
- Neutral vocabulary
- Click to validate
- Both hands usable
- Visual cues added to the room

14 / 27 Yoann Bourse directed by Eric Lecolinet

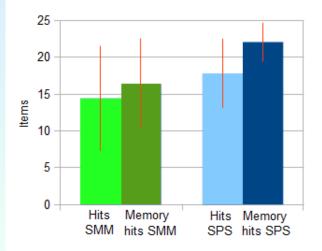
Protocol Measures Help usage User perception Qualitative observation

Techniques evaluation


Protocol : starts with example, position items, 3 learning phases, 1 phase without feedback

- Measure the use of feedback (on-demand help)
- Measure kinect-related errors : The experimenter asks where the subject wanted to point
- Neutral vocabulary
- Click to validate
- Both hands usable
- Visual cues added to the room

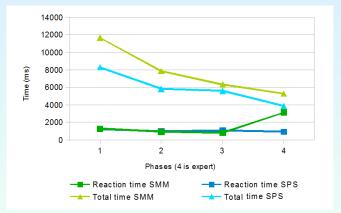
14 / 27 Yoann Bourse directed by Eric Lecolinet


Protocol Measures Help usage User perception Qualitative observation

Global learning performances

Protocol Measures Help usage User perception Qualitative observation

Memorization performances



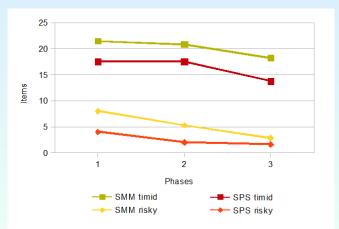
Very significant difference

16 / 27 Yoann Bourse directed by Eric Lecolinet

Protocol Measures Help usage User perception Qualitative observation

Time performances

SPS significantly faster


Protocol Measures Help usage User perception Qualitative observation

Novice to expert transition

Protocol Measures Help usage User perception Qualitative observation

Help usage profiles

Two behaviors : significant impact on performances, **not** on learning rate

Protocol Measures Help usage User perception Qualitative observation

User perception

SPS is prefered, perceived as significantly :

- more fun
- easier to get to grasps with
- easier to learn with

 SPS is less tiring, but SMM allows for easy organization of items

Protocol Measures Help usage User perception Qualitative observation

Qualitative observation

- Most user mix chaos and organization
- Organization helps memory
- Spatial and proprioceptive memory

Mnemonic devices include :

similar or opposite directions, memories, semantic mapping, visual mapping, sentiment mapping, visual memory (shape, color), audio memory, storytelling...

Contributions

• Efficient **pointing paradigm** to infer the environment from partial imprecise input

• Two micro-interaction techniques leveraging spatial memory to outperform the state of the art

\Rightarrow Submitted as a long paper to ACM CHI 2013

Conclusions

SMM (Spatial Marking Menus)	SPS (Spatial Pointing Shortcuts)
Hierarchical, limited	Chaotic, direct, unlimited
Environment oblivious	Environment based
Interactive feedback	Bimodal feedback
	Faster, preferred
16.4 learned items	22.1 learned items
Interactive feedback	Bimodal feedback
Great for organizing	Great for direct retrieval

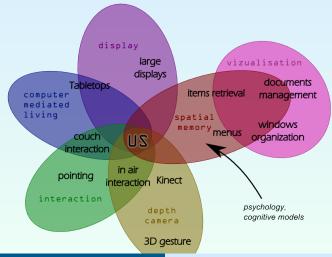
 \Rightarrow Combine the strengths of the two techniques

Questions?

Thank you for your attention.

More information and bibliography found in the report.

24/27 Yoann Bourse directed by Eric Lecolinet Leveraging spatial memory for shortcuts through mid-air deictic pointing


Questions?

Thank you for your attention.

More information and bibliography found in the report.

25/27 Yoann Bourse directed by Eric Lecolinet Leveraging spatial memory for shortcuts through mid-air deictic pointing

Where do we stand?

26 / 27 Yoann Bourse directed by Eric Lecolinet

A word about Kinect

Low-cost depth camera from Microsoft : Light coding, Time of flight

- RMSE (right, away, upwards) : 6.5cm, 10.9cm, 5.7cm
- Less precise when further away (y > 3.0m)
- Field of view : (58.6°, 43.6°); [0.47m 3.6m]

```
Microsoft Kinect SDK, OpenNI, Libfreenect C++ (openGL), <del>C#, Java</del>
```