
Manipulating curves by innovative plastic multitouch

interactions

Yoann Bourse (ENS Paris)
Mentor : Laurent Grisoni (INRIA MINT Lille)

Summer 2010

Abstract

This papers focuses on the design of a multitouch
software enabling tactile drawing and manipula-
tion of one-dimensional functions. It is destined
to a wide public, that is to say to be usable with-
out any mathematical knowledge. Therefore, we
established an user-intent driven pattern based
on a sketch paradigm. To that aim, we tried to
maintain as an invariant the global shape of the
drawn curve during the various manipulations,
which resulted in technical challenges.
We also wanted to get as far as possible from
the conventional mathematical tools, and use the
possibilities brought by multitouch technologies
to develop innovative fluid interactions to ma-
nipulate curves in a plastic way. This resulted in
very intuitive tools leading towards a reconsid-
eration of the way we view curves.

Contents

1 Related work 2
1.1 Curve modelling 2
1.2 Intent-driven paradigm 2
1.3 Shape manipulations 2
1.4 Multitouch technologies 3

2 Global orientation 3
2.1 Curve 3
2.2 Interface 4
2.3 Manipulations 4
2.4 Implementation 5

3 Features 5
3.1 Input frequency/precision 5
3.2 Coordinate system 6
3.3 User-intent determination 7
3.4 Interpolation 8
3.5 Maintaining the shape of the curve 9
3.6 Curve manipulations 10

3.6.1 Visual feedback 10
3.6.2 Area of effect 11
3.6.3 Expertise and occlusion . 11
3.6.4 Types of manipulation . . 12

4 Implementation 14

5 Conclusion 15

1

This project was motivated by the need of var-
ious people without mathematical background to
deal with curves representing the variation of a
given parameter in respect to another one (be-
ing often the time). They were forced to rely on
other specialized people whom they could have
difficulties communicating with, given their dif-
ferent formations. They often had to draw little
sketches to make their intent understood.
The gap between their background and the very
technical existing tools lead us towards a recon-
sideration of curves. Thanks to multitouch in-
teractions, we tried to get closer to human’s in-
tuition and to provide new tools to manipulate
curves that require no mathematical knowledge.
Since we wanted our software to answer the need
for intuitive manipulation tools, we decided right
away to focus on user’s intents. Therefore, the
semantic of the curve in the situations we con-
sidered lead us to focus on the case of one-
dimensional functions (at a given time, the rep-
resented system is in a single state). Moreover,
we wanted our manipulations to be smooth and
plastic, and thereby distort the curve without
losing its general shape.
All those constraints resulted in the development
of a very user-friendly software enabling anyone
to draw and manipulate curves by plastic oper-
ations with multitouch interactions.

1 Related work

1.1 Curve modelling

For various reasons discussed later (see 2.1), we
were brought to use a cardinal spline interpola-
tion paradigm. We transformed the user input (a
list of points) to a piecewise polynomial function
using cubic Hermite spline polynomials, inspired
by the success of this model in modelling and
visualization.

1.2 Intent-driven paradigm

During all the development, we focused on the
user’s intents. We wanted a very simple and
user-friendly interface, so that it would not take
any expertise at all to master. As a result, we
ended up with almost no buttons, and nothing
else than the fingers to interact with the curve.
Therefore we needed to focus on the context to
retrieve informations about user’s intents. The
mechanisms involved are discussed later (see
3.3). We were inspired by several successful
examples such as Google Sketch Up [2].

1.3 Shape manipulations

In order to stick to the intuition, we analyzed the
psychological aspects of curve manipulations.
We were inspired by Michael Leyton’s Shape
Form Deformation theory [3], which states the
hypothesis that a shape is mentally defined as
a succession of deformations applied to a basic
shape. We therefore provided the user with a
corresponding experience : they will first draw
a simple shape and then modify more precisely
differents aspects of it in order to obtain the final
required result.

2

1.4 Multitouch technologies

Our manipulation are designed to fit the move-
ments of a human hand, in order to create a
direct contact between the user and the manipu-
lated curve. Multitouch technologies play there-
fore a major role in enabling the intuitive ma-
nipulation of curves. But there are currently
many providers of such technologies, and al-
most no standards, making the interoperability
very hard. Although Apple platforms are widely
spread, they are very restrictive as regards pro-
gramming. Therefore we chose to focus on Mi-
crosoft Windows Seven.

2 Global orientation

We will present and discuss the reasons of the
guiding lines we adopted in this work in order
to enhance our user-friendly plastic interaction
experience.

2.1 Curve

Given our specifications, we decided to work only
with one-dimensional curves. Yet, the user has
the possibility to click anywhere on the screen
and thereby to draw loops or parametric shapes
that do not fit the one-dimensional curve con-
straint. We had to maintain this invariant in
an intuitive way. Our solution was to consider
the user input like a sorted list of Y-coordinates,
indexed by X-coordinates : therefore, to each X-
coordinate corresponds only one Y-coordinate.
Drawing a new point with the same X-coordinate
overwrites the old one, which turns out to be
very intuitive.
This, on the other hand, caused problems with
the frequency of the sampling of the input : in-
deed, we do not receive a continuous signal but
a sampled list of positions of a finger. Therefore
a finger is rarely twice in the exact same spot,
and registering every position poses the risk to
end up with a lot of very thin spikes. Therefore,
several points must be erased, and some data are
bound to be lost (see 3.1).
Moreover, the frequency of the sampling forces
us to find a smooth way to join the points. Hence
the use of an interpolation. It also eased the ma-
nipulations to come, and improved greatly the
performances. The various shapes of the drawn
curves lead us to use a cardinal spline interpola-
tion, with Hermite polynoms (see 3.4). There-
fore, the curve is defined as a list of key points
(two coordinates plus one tangent).

3

2.2 Interface

The interface of the software had to be the
starting point of an immersive experience for
any user, regardless of their background in
mathematics or their familiarity with com-
puters. Therefore, our goal was to keep it to
the strict minimum, without any unnecessary
buttons, all the more so that we wanted our
application to be usable only with fingers.
As a result, we provided large buttons and
a configuration panel (to change the various
parameters of the software) whose settings could
be modified through scrollbars.

The main screen is the drawing board, where
the user can draw directly with their fingers. He
will then be able to complete what he has drawn
by other dots or lines, or to manipulate and
transform what is already on the screen thanks
to the various tools at his disposal (see 3.6).
One of our other guiding line was to provide a
omnipresent visual feedback (see 3.6.1). What-
ever the user does, the program always provides
a notification to inform the user that their ac-
tion has been taken into account. Colors, sizes
and positions are used to distinguish as much as
possible the different states in order to provide
a clear environment. The notifications however
are as light as possible so as to keep a sober and
purified interface.

2.3 Manipulations

To conceive the different manipulations, we tried
to get as far away as possible from the mathe-
matical perspective, and consider the curve as
a plastic object. We wanted innovative opera-
tions, though their bases would be theoretically
solid. We also aimed at providing different levels
of expertise for those manipulations, to increase
performances and precision when the user gains
experience (see 3.6.3).
Without buttons in the interface, the only tool at
the disposal of the user was their fingers, thanks
to the multitouch technology. Hence the crucial
importance of the context in order to stick to the
user’s intents. The type of the manipulation is
thus determined by various factors including the
number of fingers down, their relative position,
their movement direction... Yet, the decision be-
tween the numerous possibilities had to be very
fast in order to maintain a real-time interaction
between the user and the curve (see 3.3).
One of the most basic operations we imple-

4

mented was the possibility to stretch the axis in
order to zoom on parts of the curve. Started this
moment, the screen could display only a part of
the curve. Therefore, the precision of a manipu-
lation could be directly given by the zoom : we
operate on the pixels, and the manipulation is
applied to the points they represent, according
to the current zoom.

2.4 Implementation

We will present later (see 4) a diagram summa-
rizing the consequences of those constraint and
choices on the implementation. Several manipu-
lations were programmed, including :

• Zoom and translations of the axes

• Translation of the curve

• Horizontal stretching of a part of the curve

• Vertical stretching of the whole curve

• Gaussian smoothing of a part of the curve
(sanding)

• Rotation of a part of the curve (tangent
modification)

• Various local applications of a translation
vector

All of those moderated and modified in order to
stick to our constraints (see 3.6.4)

3 Features

Let us now focus on different aspects of the pro-
gram. We will describe the various features,
their conceptual implications as well as the tech-
nical challenges we had to overcome. In this
section, we distinguish the user-drawn curve de-
signed by a direct finger input (initial drawing or
new drawing overwriting previous parts of the
curve), and the manipulations which are only
transformation applied by the user to it later on
thanks to the tool we developed (see 3.6).

3.1 Input frequency/precision

We can distinguish two drawing operations :
pointing to draw a single point, or moving one
finger in a continuous move to draw a line. Both
raised challenges as regards the frequency of the
sampling of the input, considering the fact that
we view the one-dimensional curve as a list of
Y-coordinates indexed by X-coordinates, with-
out doubles, thanks to an overwriting paradigm.

Pointing operation

Pointing in a single location is interpreted by
the will to add a single point to the curve. How-
ever, there are chances that a point of the curve
already exists only a few pixels away from the
location desired. This will result in the creation
of a thin spike. Even though it enables preci-
sion drawing, this conflicts with our overwriting
paradigm : a point is almost impossible to erase
willingly. All the more so than the main input
tool is supposed to be the user’s finger, which
is not at all precise. Therefore, adding a point
erases neighbouring points in a given area of ef-
fect (default is 10 pixels). This loss of data seems
necessary to deal with the bad precision of a tac-
tile input.

5

Moving operation

Depending on the speed of the finger, the gap
between two following signals in a moving oper-
ation might be significant, and therefore those
two signals may surround existing points. How-
ever, those two signals are bound by the seman-
tic connotation of the user’s moving operation :
they correspond to the same finger which was not
lifted of the screen, and therefore are expected to
be directly linked. Hence the need to keep the
previous sample registered, however close it is,
but delete any point between the previous and
the current sample. Moreover, we have to be
careful not to delete the previous sample even
if it is in the radius of erasing mentioned in the
pointing operation (which is most of the time the
case).

3.2 Coordinate system

As seen in 2.4, the coordinate system acts as
the control of the buffering between the whole
function stored in memory with actual X/Y co-
ordinate, and the graphical part of the curve
displayed on the screen with pixels coordinates.
The ability to zoom in and out of the curve is the
crux to the setting of the precision of any ma-
nipulation, as they operate on pixels (see 2.3).

Graduations

The displayed coordinate system is able to
adapts itself automatically to the scale, seeking
the optimal scale for a better rendering. The
step between two axes graduations is chosen
between powers of ten, according to the maximal
number of graduations specified, thanks to the
following law :

step = 10blog(
Max−Min

MaxNbGraduations
)c

Various trials with other automatic step system
proved inefficient : the possibles step have to
be multiples of each other so that no graduation
appears out of nowhere and thereby disturb the
user.

Stretching

Any axis manipulation is started by putting
a finger down on one axis. The translation
of the viewed zone is trivial (the coordinate
system follow the finger). But changing the
scale of the coordinate system was a little more
complex. This was a perfect opportunity to
study stretching manipulations in order to make
our zoom as intuitive as possible.
We distinguish two different types of stretching
: either the user puts one finger down and then
uses another one to stretch the axes in respect
of the first one (figure 1), or they put down
two finger in the same and move them around
(figure 2). In the first case, the user expects
the first location they pointed to pinpoint the
curve. In the second one, the pinpoint would
be the middle of the two initial position of the
fingers.

Figure 1: Pinpointing and moving finger

Figure 2: Two moving fingers

6

In order to determine which stretching is in-
tended, we decided not to rely on a temporal
difference which could be misleading, but rather
on the movement of the first finger down : if its
speed raises above a given threshold, we enter
the second kind of stretching.
We wanted to enable the manipulation of either
one axis at a time, or both in the same time. This
was another user-intent determination challenge.
It is settled by the consideration of the respective
position of the two fingers : if the vertical compo-
nent of the vector they are forming is low enough,
the stretching operates only on the horizontal
axis, and vice versa. If both component are sig-
nificant, we stretch the horizontal and vertical
axis proportional to their corresponding compo-
nent, so that the user has a control over the di-
rection of the stretching by the direction of the
vector joining their two fingers.

3.3 User-intent determination

Our goal was to develop a user-intent driven soft-
ware without any other tool for the user than
their fingers. Therefore, context-based determi-
nation of the ongoing process is omnipresent.
We will present here an overview of the general
mechanisms.
We distinguished three zones on the drawing
board : the curve, the axes and everywhere else
(free space). When the user puts one finger
down, the program will answer in consequence.
The lines constituting the curve and the axes be-
ing very thin, there is a settable tolerance thresh-
old to select it. Each zone will allow a different
set of actions. The number of fingers put down
following this first one is then monitored and will
be useful to determine the exact function to pro-
vide. Movement and position of all the fingers
are of course considered. The time however is

not, due to the fact that users can have very
different manipulating speed depending on their
experience with the program. We will present
briefly the detection mechanisms involved, with-
out describing the various manipulation which
will be dealt with later (see 3.6).

Free space

Putting one finger on the free space will enable
the drawing mode, that is to say direct user
drawing input (line or dot). However, putting
a second finger will allow the user to stretch a
part of the curve. Therefore, when only one fin-
ger is down, we are in an undetermined state.
We need to buffer the input point and wait for
either a lift or a move from the finger (and con-
firm the will to draw) or a second finger down
(and confirm the stretching).

Axes

A finger down translates the function until an-
other is down, starting the stretching mode. The
stretching mode then will not exit if one finger
is up, enabling to stretch several times in a row.

Curve

A finger on the curve enables the various ma-
nipulations, that is to say transformations of the
curve with the conservation of its global shape.
All those operations have a default area of ef-
fect, but it can also be specified by pinpointing
two points of the curve which will stay fixed and
become the boundaries of the manipulation’s in-
fluence. Hence the apparition of another unde-
termined state.
The number of fingers down is not sufficient to
settle the conflict. Indeed, the rotation ma-
nipulation uses two fingers, and is triggered by
putting down the second finger on the tangent of

7

the curve, next to the first one. Therefore, the
position of the second finger down is crucial : if
it is anywhere else than the tangent, it will set
the area of effect, and those two first fingers will
become virtually inexistant : it is exactly like if
they did not exist, but we cannot remove them
per say from the actual list of fingers detected
because it will start a new interaction. Hence
the need to operate on a virtual list of ”free”
fingers, the fingers that are not pinpoints, that
is to say all the fingers down but the first one
and the second if it was anywhere else than the
tangent. The position and movement of the fin-
gers in this list will then trigger manipulations,
locally limited or not.

3.4 Interpolation

As we use a cardinal spline interpolation to
connect the points of the curve, we can optimize
the process by getting rid of all the unnecessary
points. Therefore, any drawing input is final-
ized by the update of the interpolation which
preserve only what is necessary. This operation
is done by a little algorithm described below.
An option in the configuration panel enables
the update of the interpolation after every
manipulation, in order to register more precisely
the result of it. In order to stick to a sketching
paradigm and to focus on the user-drawn curve,
it is by default disabled.
Although the drawing board is not especially
oriented, we can notice that this algorithm is.
However, it does not seem to cause any relevant
consequence. This algorithm enables us to work
only with a minimal description of the user’s
input, so as to optimize performance and to give
us more flexibility in the various manipulations
of this input that will be possible later on. As
a result, the curve is stored and manipulated as

a list of key points (coordinates plus tangents).
Hence the obligation to set a maximal distance
between the kept points, in order to maintain
the global shape of the user-drawn curve during
all the manipulations to come, even if it may
result in the keeping of unnecessary points.

Let us noteH(begin, end) the Hermite polyno-
mial obtained by an interpolation on the segment
[begin, end] using the coordinates of the points
begin and end, and their neighbouring points to
compute the appearing tangent in those points.

KeyPoints = [] ;
Orig inPoly = DrawnPoints . F i r s t () ;
Prev iousPoint = DrawnPoints . F i r s t () ;

foreach (CurrentPoint in DrawnPoints)
{

Check that a l l the po in t s in
[Orig inPoly ; CurrentPoint]
are c l o s e enough from t h e i r va lue
in H(OriginPoly , CurrentPoint)
else {

Add PreviousPoint to KeyPoints ;
Orig inPoly = PreviousPoint ;

}

PreviousPoint = CurrentPoint ;
}

Add DrawnPoints . Last () to KeyPoints ;

8

3.5 Maintaining the shape of the
curve

Attenuating the manipulations

Maintaining the shape of the curve was one of
the hardest challenge we had to face, and one
of the reasons for our use of key points. They
were easier to manipulate and enabled more
complex operations, often constructed around
geometric bases, which enhanced the plastic
view of the curve we wanted for our program.
Yet, those geometric operation, as intuitive as
they might be, raised the major problem to
enter in conflict with the invariant we wanted to
keep : the curve had to stay the representation
of an unidimensional function. Therefore, the
problem was how to handle manipulations which
would change the order of key points (that is to
say if a key point that was right to another one
ends up left to it after the manipulation).
This case was of course to be forbidden. It
was relatively easy to detect, but avoiding it
was a lot more complex. We could have simply
stopped the manipulation on detection of a
conflict, but it was a dead-end. Indeed, if any
conflict in the area of effect of a manipulation
were to stop it, this manipulation would be
drastically limited. Our trials resulted most of
the times in rotations with no more than 40◦

of movement amplitude for instance. Moreover,
such a solid block was totally against our will
for a plastic view of the curve. Hence the need
for another solution which would slow down
the manipulation around any conflict zone
without preventing it from continuing elsewhere
(possibly slowed in order to notify the user of
the conflict).
We therefore developed such a generic atten-
uation algorithm for all our manipulations.
Instead of writing a complex unclear pseudo-

code, we will explain its functioning. Its goal is
to produce, for every point, a moderating factor
in the range [0,1] which will be multiplied to
the transformation vector the point is going to
follow and thereby avoid any conflict. Let us
call it maximal possible factor. The algorithm
therefore needs all the transformation vectors for
the studied manipulation, and it will maintain a
maximal possible factor for every point, which
can only decrease. It operates around a center
(often the finger) and within the boundaries of
the area of effect, in a centrifugal way. It will
indeed consider every point from the center to
the boundaries, and try to solve any possible
conflict.

As the algorithm is symmetrical, let us con-
sider for instance a point T right to the cen-
ter. Let F be the next key point in the di-
rection of the center. We compute nT and
nF , the position of T and F after the modi-
fication, given the current maximal possible
factors (being 1 if not initialized). If nT is
right to nF , there are no problems. Else, we
need to consider the direction of T .

• If it is leftwards, we need to moderate
its movement so that T stays right to
nF .

• If it is rightwards, we need to moderate
the movement of F so that it stays left
to T , and to set the maximal possible
factor of T to 0 so that it does not move.
But the moderation of the movement of
F may have caused a conflict : therefore
we need to recursively consider the point
F and handle the conflict.

In the implementation, using detection thresh-
old and margins in order to maintain some dis-

9

tance between the key points is recommended.
This algorithm is quadratic, but the low number
of key points makes it fluid to use. Moreover, to
improve performances, there are some cases of
manipulation where this algorithm can be only
locally applied (only to the boundaries for in-
stance).

Manipulating the tangents

The geometric manipulation of key points also
causes the problem of the manipulation of their
tangents, which can rarely be determined ana-
lytically. Therefore, we focused on the difference
between the slope of the tangent on a key point
and the slope of the line joining the previous and
next key point. Saving it and restoring it after
the manipulation by adding it to the slope of the
line joining the new position of the surrounding
key points brought good results, but sometimes
lead to very sharp tangents, especially around
the center of the manipulation.
Therefore, we developed a mean to attenuate it.
We compute a weighted average between this
retrieved tangent and a fictive tangent, which
is the average of the slopes of the lines join-
ing the current point to its neighbouring points,
weighted inversely proportionally by their dis-
tance on the X axis. Thereby, this fictive tan-
gent is more influenced by sharp rises between
key points, which improves the behaviour around
the center of the modification. The weight in the
average between the two tangents is optimally a
function of the distance between the considered
key point and the center of the modification :
the further you are from the center, the more
important the virtual tangent is.

3.6 Curve manipulations

The different manipulations possible on the
curve are really the heart of the program, given
that the drawing mode is very casual. With the
invariants of the programs maintained, we can
now focus on enhancing the user immersive expe-
rience. Note that in the picture, the huge arrow
are added and don’t appear in the program.

3.6.1 Visual feedback

Putting a finger down on the curve will begin
a user-friendly notification of most of the pos-
sible manipulation, in a non-invasive way : the
tangent and the normal in the selected point are
displayed. The user has then the possibility :

1. to pull the curve around, the normal becom-
ing a sort of stick for them to use.

2. to follow the tangent and rub the curve
in order to enter a sanding manipulation
(smoothing).

3. to put a finger down on the tangent and
rotate it around to start a rotation.

Figure 3: Possible actions are notified

10

They may also point another finger anywhere
on the screen to determine an area of effect or
beginning a translation of the whole curve.

3.6.2 Area of effect

All the manipulations have a default area of ef-
fect, which is settable in the configuration panel.
It is centred around the finger. But putting down
a second finger after having selected the curve
will define a specific area of effect for the follow-
ing manipulations. This is easily done by simply
ignoring fingers outside the interval. It is advised
to set the interval with one hand and manipulate
in between with the other one.

Figure 4: Setting the area of effect

For any geometrical manipulation, the trans-
formation vectors are generally applied within
the area of effect with an attenuation factor so
that the manipulation is more effective in the
center. A gaussian attenuation was often too
rough, therefore we used most of the time a lin-
ear factor which turns out to be the smoothest
and most fluid of everything we tried. Further-
more, the area of effect is always defined on the

X-axis, and not geometrically centered on the
finger.

3.6.3 Expertise and occlusion

Although we wanted our program to be very ac-
cessible, we also wanted to provide content for
more expert users, especially in order to compen-
sate the lack of precision caused by our sketch-
ing paradigm. Our way to do so is very simple.
Once any operation has started, it is registered,
and the user can slide their fingers to continue
it anywhere else on the screen. They just have
to do the same relative movement with their fin-
gers as if they were actually on the manipulat-
ing point. This is a way to get more visibility
about the ongoing operation by removing any
occlusion, which is often annoying (see figure 4),
especially in the case of rotation, where several
fingers are on the spot of the manipulation (see
figure 9). The expert can also adopt a more com-
fortable finger positions.

Figure 5: Without occlusion

11

3.6.4 Types of manipulation

Let us finally review the different manipulation
featured and their theoretical meaning.

Moving

The user can move the curve around without
moving the axes (translation) by putting down
one or more additional fingers after having se-
lected the curve.

Stretching

By stretching in the free space, the user can
stretch a part of the curve without moving the
axes. The rest of the curve is translated. The
stretching can be either vertical or horizontal,
and is limited by the two finger. Its direction
is given by the major component of the vector
formed by the two fingers, that is to say by the
angle between the line joining the finger and the
horizontal one.

Figure 6: Stretching

Sanding

When the finger follows the tangent (that is to
say the curve), it enters the sanding mode. By
rubbing the curve, it will smooth it. This is
simply achieved by applying a gaussian smooth-
ing on the points hoovered by the finger, with
σ = Areaofeffect

3 , so that it covers all the zone.
If the area of effect is limited and therefore not
symmetrical, we use a piecewise gaussian func-
tion composed by two halves joined in the center.

Figure 7: Sanding

Rotating

The operation corresponding to the change of
a tangent is simply a geometric rotation of the
key points around the pinpointed point. It will
of course result in a change in the tangent, but
it will be much smoother and more natural, due
to its area of effect. The conservation of the key
points enable the keeping of the global shape of
the curve, but it will also result in the creation of

12

Figure 8: Rotating

Figure 9: Rotating without occlusion

sharp slopes where key points are pushed against
one another. The interpolation combined to the
rotation provide here a whole new fluid interac-
tion, which is able to go on even when there are
conflicts.

Pulling

The user can pull and push the curve with the
purple stick that once was the normal at the con-
tact point. It is in fact the application of the
translation vector that the finger follows, mod-
erated by the same linear factor as the other ma-
nipulations, centred around the X-coordinate of
the moving finger, wherever it is. The visual no-
tification is a little more complex and links the
fingers to the point whose X-coordinate is the
middle of those of the application point (mov-
ing finger) and the extremum of the curve in the
direction of the movement, in order to provide
the impression that we grab the curve in its ex-
tremity to pull it. Like the sanding, this is a
continuous operation.

Figure 10: Pulling

13

Ball manipulation

The ball manipulation is a manipulation which
is possible only in a limited area of effect. In-
deed, when two fingers are already down, putting
down another finger in the free space creates an
”energy ball” which can either push or pull the
curve from a distance. This very visual interac-
tion is in fact the application of another transla-
tion vector, whose direction is given by the finger
(”ball”) movement, on the whole area. Contrary
to the pulling operation, this one can be easily
iterated several times in a row, which enables to
stretch the curve by pushing it away.
The ball manipulation is by default vertically
limited, that is to say vertical modifications hap-
pen only on half a plan (below or above the sec-
ond finger down), and are proportional to the
distance between this horizontal axis delimiting
the two halves and the considered point. There-
fore, the further away you are from this tempo-
rary Y-origin, the most important the effects of
the manipulation are, with of course a limit fac-
tor in order to keep the behaviour reasonable.

Figure 11: Ball manipulation

4 Implementation

We conducted the implementation of an em-
bedded application using windows 7 multitouch
API, and programmed in C# / WPF. The
source code belongs to the INRIA laboratory
LIFL, but a video displaying the various features
of the program is available online [7].
Below stand a diagram underlining our archi-
tecture to answer to our constraints, especially
the interpolation which acts as a buffer between
the display and the storage.

14

5 Conclusion

This project was the occasion to develop innova-
tive tools to manipulate curves in a new plas-
tic way, regardless of the mathematics under-
neath, for anyone to use. The constraint we im-
posed on ourselves for our program to be user
friendly and accessible brought us closer to the
intuition. This trend was enhanced by our user-
intent driven conception. Multitouch technol-
ogy enabled a real-time immersive experience
of manipulation, where the user can really con-
nect with what they manipulate. A fixed finger
pinpoints the curve, a moving finger drags it.
Thereby we obtain an immediate link between
the user and the computer, through the optimal
use of the multitouch interface.

References

[1] Windows Touch Developer Ressources
http://code.msdn.microsoft.com/WindowsTouch

[2] Google sketch up : intuitive 3D modeling
http://sketchup.google.com/

[3] Leyton, M.
A Process Grammar for Shape, 1988

[4] Bartels, Richard H. and Beatty, John C.
A Technique for the Direct Manipulation of
Spline Curves. Proceedings of Graphics In-
terface’ 89, June 1989.

[5] Grisoni, L., Blanc, C., Schlick, C.
Hermitian b-splines. Computer Graphics Fo-
rum 18, 4 (Dec.), 237–248, 1999.

[6] Processing Approach to Fair Surface Design,
G. Taubin, Siggraph’95

[7] My personal website, where a video of the
resulting software can be found
http://www.YoannBourse.com

Special thanks to Damien Marchal whose help
was invaluable.

15

